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KEY TO SYMBOLS

Amax Missile acceleration during the boost phase.

Ainin Missile deceleration during the coast phase.

Aoff Spherical angle between the missile velocity vector and the
line of sight to the target.

AT Target acceleration.

a Maximum value of the control.

F Matrix describing the dynamic interaction between the state
variables.

FXFy Fz  Components of applied forces on respective body axes.

GXGY,Gz  Components of applied moments on respective body axes.

g Acceleration due to gravity.

H Hamiltonian function.

Ix'lyIz Moment of inertia with respect to the given axis.

J Cost function.

L Matrix describing the dynamic interaction between the state
and control variables.

m Missile mass.

NxNy,Nz Components of applied acceleration on respective body axes.

p,q,r Angular rates about the x, y, and z body axes, respectively.

p Adjoint variables.
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PITCH The angle measured in the vertical plane between the x body
axis and the inertial XY plane.

R Slant range from missile to target.

ROLL (Bank) Angle measured in the yz plane of the body system
between the y body axis and the YX inertial plane.

Tb Time during which the missile is accelerating (burn time).

Tgo Time-to-go (Estimated).

t Time.

tf Final time.

ts  Switching time between saturated and unsaturated control.

to Initial time.

u,v,w Linear velocities with respect to the x, y, and z body axes,
respectively.

u Control variable.

V Missile total velocity.

Vc Closing velocity.

VT Target total velocity.

VxVyVz Inertial relative velocities with respect to the X, Y, and Z
inertial axes, respectively.

x State vector.

x,y,z Body stabilized axes.

X,Y,Z Inertial axes.

y Terminal boundary condition.

YAW The angle between the projection of the x body axis onto the
inertial XY plane and the X inertial axis.

* Missile ROLL Euler angle.

.e Missile PITCH Euler angle.
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ea  Initial azimuth angle between the target velocity and
missile LOS.

eg Seeker elevation angle.

Missile YAW Euler angle.

' a Initial elevation angle between the target velocity and

missile LOS.

41g Seeker azimuth angle.

wy,6 z  Components of missile angular rates with respect to the
respective seeker gimbal axes.

XT Reciprocal of the target maneuver time constant.

Weighting factor.
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Linear optimal control laws used for bank-to-turn missile guidance

were investigated. The performance of these control laws was erratic

because their development neglected attitude dependent constraints on

the control variables. The effects of an inequality constraint on the

control variable in a fixed final time, zero error controller were

analyzed. This analysis led to the conclusion that the accepted tech-

nique of applying the constraint to the unconstrained optimal control

solution is valid only if the control is saturated during the initial

portion of the trajectory. Constraints during the terminal phase must

be anticipated by adjusting intermediate boundary conditions. The

nonzero set point optimal control law used for the analysis of inequal-

i ty constraints was incorporated into a nonlinear Bank-to-turn

attitude" controller. This controlle-, which was evaluated on a six

degree of freedom simulation, --. ce ,ully eliminated the deficiencies

of the linear controllers.,--
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CHAPTER I I
INTRODUCTION p

The classical approach for air-to-air missile control was based on

velocity pursuit guidance, which is implemented by requiring the missile

velocity vector to point at the target [1]. While adequate for slow

moving targets, the concept fails in the current air-to-air scenario

because, as the distance to the target decreases, the turning rate of

the missile increases until unattainable accelerations may be required.

Current guidance laws are based on proportional navigation which

causes the missile to fly a straight line trajectory toward the target

[2,3,4). In proportional navigation (pro-nay), the line-of-sight (LOS)

rate is regulated to zero. Consequently, the implementation is simple

because the outputs of a gimballed seeker provide direct missile

acceleration commands. Also, this guidance law has better performance

if the target and missile have constant speeds. Bryson and Ho [5) have

shown that proportional guidance is optimal in the linear quadratic

gaussian (LQG) sense if:

1. the target has constant velocity,

2. the missile has unlimited and instantaneous response, I

3. the LOS angles are small,

4. the missile velocity along the LOS is constant.

However, these assumptions, inherent in the formulation, lead to rather

serious limitations or inadequate performance in the current air-to-air

arena [6]. Therefore, improved missile guidance laws are required for
I 1-

o - . - - -. --= . - . 4- . . - . - . . - . . • . .. . . . . . • - . .' .- . . . " " . . . . . "-
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more demanding engagements, more maneuverable targets, or improved

accuracy.

While a number of guidance laws have been devised to improve the

shortcomings of pro-nay [3,4,6,7,8,9], a number of advanced guidance

techniques have been investigated to increase the launch envelope,

provide better maneuver capability, and reduce the miss distance

experienced with the classical approaches. These techniques use optimal

control methods based on [13:

1. Linear Quadratic Theory,
2. Linear Quadratic Gaussian Theory,
3. Singular Perturbation Theory,
4. Reachable Set Theory,
5. Differential Game Theory,
6. Adaptive Control,
7. Dual Control,
8. Spline Polynomial Approximations.

In general, these studies have either neglected the acceleration

constraints, uncoupled the equations of motion, or reduced the problem

to two dimensions. Nevertheless, a number of these optimal guidance

laws have been applied to the study of a specific "generic" short range,

highly maneuverable, bank-to-turn, air-to-air missile [10,111.

For the models under consideration, the optimal control laws were

based on the finite dimensional linear system:

= Fx + Lu

where the state variables, and system matrices are defined to

incorporate assumed system dynamics. The control laws were solved in

inertial coordinates with a quadratic cost that included a penalty on

miss distance and assumed a known fixed final time. Four linear and

1 four nonlinear laws were defined by Fiske [8]. Table 1 presents the

description of the linear models.
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TABLE 1.1 Optimal Linear Guidance Laws

DESIGNATION DESCRIPTION

G1 Optimal Linear Guidance.

G2 Optimal Linear Guidance accounting for
target acceleration.

G3 Optimal Linear Guidance accounting for
target acceleration and first-order
missile/autopilot dynamics.

G4 Optimal Linear Guidance accounting for
target acceleration and second-order
missile/autopilot dynamics.

The nonlinear models were determined from the same models as the linear

guidance laws except that the results were passed through the saturation

function.

Initial results with the advanced guidance laws indicated only

marginal performance gains over the classical technique, pro-nay. In

fact, proportional guidance performed as well as optimal guidance where

the missile had large heading errors (in violation of an assumption for

pro-nay optimality) [5,8]. Also, increasing the complexity of the

guidance law or filter (15 vs 9 states) did not statistically improve

the performance [8].

As a simplifying assumption, the optimal control derivations

assumed a fixed final time. And, since the control law is sensitive to

this parameter, an initial explanation for the failure of the optimal

guidance laws was the accuracy of the Time-to-go (Tgo) estimate [11).

Consequently, an improved Time-to-go estimating technique was developed

by Riggs [12) . This technique was simple, stable, and effective in

increasing the missile's performance on the inner launch boundary. The

technique also addressed one of the other less desirable assumptions in
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the formulation of the problem, control over axial acceleration. In

effect, Riggs' Tgo algorithm operates by equating the x commanded

acceleration from the control law to an estimate of the average

acceleration and solves the unknown parameter Tgo. With this new

estimate of Tgo, the advanced guidance laws (evaluated with a passive

seeker) significantly outperformed pro-nay in the short range

environment [11].

This thesis addresses some remaining limitations of the current

optimal control laws and provides an alternative mechanization of

optimal control results.

* .i ~±



CHAPTER II
OPTIMAL CONTROL LAWS

Modern control theory [5,13,14] provides techniques to optimize

guidance laws for air-to-air missiles. With respect to the stochastic

control problem, Shalom and Tse [15) outline the various types of

stochastic control laws available. Shalom and Tse and Van De Water and

Willems [16) provide justification for the use of the Certainty

Equivalence Property (no dual effect of second order). Consequently,

although stochastic models are discussed in [5) and a specific technique

is introduced in [8), the general procedure in air-to-air guidance is

the use of filtered estimates that provided conditional expectation and

rely on a dynamic-programming-like definition of optimality with the

Certainty Equivalence Property to find optimal control laws

[15,16,17). Therefore, the guidance laws that have been derived and

implemented in [8,10,11) and that will be considered here are

deterministic.

As mentioned previously, the studies that have provided optimal

(both linear and nonlinear) guidance laws have neglected the

acceleration constraints, uncoupled the equations of motion, or reduced

the problem to two dimensions. The application of these guidance laws

to the bank-to-turn, air-to-air missile has produced unexpected results

[10,11). Most of the current anomolies can be traced to the formulation

of the control law and the properties of the bank-to-turn missile.

~5
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While this vehicle can attain high normal accelerations, it has

some unusual limitations, and the guidance laws did not consider these

restrictions. To begin with, the control laws were derived using an

-. - unconstrained, fixed final time controller with a quadratic penalty

function on the terminal error [7,81. Actually, the problems are a

terminal controller with zero terminal error, inequality constraints on

the admissible controls, and final time free.

Also, there is an aspect of this generic bank-to-turn missile that

is in conflict with the unconstrained formulation of the advance

guidance laws. In contrast to the "standard" air-to-air missile which is

symmetric and can maneuver equally well along either axis, this missile

has a planar body that provides a high coefficient of lift. (See

Appendix D.) Consequently, it can maneuver well along one axis (100

"g") and very poorly along the other (5 "g"), and in order to utilize

it's acceleration potential, the missile must bank to maneuver (turn).

The current control laws function with relative positions and velocities

in inertial space. Yet, the control constraints are significantly

different for each body axis and are fixed with respect to the missile

body axis. The result is unequal control constraints that are a

function of the relative target-missile attitude and geometry.

A related shortcoming of the guidance laws is the absence of roll

control. This absence can lead to additional problems. First, the

seeker gimbals are limited (60 degrees), and this limitation is not

considered. Also, since the guidance laws rely on the autopilot to roll

the missile, it may be possible for an evading target to maneuver itself

such that its maximum maneuver direction is orthogonal to the missile's

primary axis and gain a temporary maneuver advantage. Since the warhead



7

effects are a function of roll angle, these effects will couple with the

maneuver advantage to limit the effectiveness of the missile.

The first shortcoming, the zero error controller versus the

-quadratic penalty on the miss distance, was first addressed by

Youngblood [9]. In [9], the following assumptions were incorporated

into the model:

1. PITCH and YAW motion are uncoupled by roll;

2. the angular deviation between the x body and inertial

axes is always equal to zero;

3. the relative axes are nonrotating and the line of sight

angle is small;

4. the target has constant lateral acceleration.

While the research effectively handled the zero terminal error

aspect and demonstrated improved performance, it did not consider the

control constraints or the fact that the Euler angles, and consequently

the control law, were changing as a result of the control inputs.

An analysis of the trajectories, in addition to the miss distance,

indicated that the primary problem with the control laws using the

improved Tgo was associated with the attitude dependent missile

acceleration constraints that were not modeled. Consider for example

the following two runs made from the same initial conditions using

different guidance laws. Both of these runs are well within the launch

envelope of the guidance law, use perfect position data with control

inputs that are constrained by the autopilot, and are against a target

that begins a level 9 "g" turn when the range equals 6000 feet. Run 1

uses G1, and Run 2 uses G4--the more sophisticated guidance law.
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As seen from Figures 2.1 and 2.2, the simpler GI performs better

than G4 in that it has a smaller miss distance (21 versus 32 feet) and

more control available in the terminal phase. The difference is caused

by the fact that G4 incorporates second order missile dynamics and

generates a command that accounts for the Imperfect autopilot.

Consequently, terminal errors in the states cause higher acceleration

commands as G4 accounts for autopilot delays. These commands saturate

unequally and the resultant vector is rotated away from the target.

This in turn causes larger deviations, further saturation and a near

miss. In fact, while the acceleration commands of G1 are well within

the maximum since the missile performed the roll toward the target, the

G4 commands are saturated for the last .36 seconds prior to impact.

An attempt to include control constraints resulted in the nonlinear

models of Fiske [8). But these nonlinear models were determined from

the same models as the linear guidance laws except that the results were

passed through a saturation function. This method had two errors.

First, the inertial constraints are Euler angle (attitude) dependent,

and as seen from Figures 2.1 and 2.2, arbitrarily limiting one or both

axes without considering the effect on the resultant acceleration --

command, can cause the missile to actually accelerate away from the

target. Second, while the use of the saturation function seems like the

natural procedure and is discussed by Tufts and Schnidman [18) and

Bryson and Ho [5], the unmodified use of the saturation function may not

be optimal. A discussion of the effects of constraints on control

continues in Chapter III.

If the model used to develop the controller accurately describes

the dynamical system and a closed form solution for this model can be

...- '.,..; -....... .. .. .. ..
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computed, then the optimal control can be based on initial solution of

the unique two point boundary value problem. Consider two identical

systems. If one of the processes is "interrupted" and then reinitiated

using the existing values as initial conditions to the same boundary

value problem, then two processes would still have the same

trajectory. However, if the model used to develop the controllers was

not accurate because of approximation, neglected states, etc., then the

same experiment with the "simplified" controller would not produce the

same trajectory, and the interrupted controller would have feedback

gains that are more consistent with the accurate controller.

Consequently, the "simplified" controller must be reinitialized at each

guidance update [6). In the latter case, the terminal controller is not

a function of time but of only Time-to-go to the terminal state. This

is an effective technique to accomodate nonlinearities, modeling errors,

and uncertain target maneuvers.

In addition, the one step update gives the terminal controller with

a quadratic penalty function on the terminal error some of the

properties of the zero terminal error controller. In the quadratic

penalty error controller, the control gains decrease to zero as the time

approaches the final time. In the zero terminal error controller, the

control gains grow without bound as Tgo approaches zero. When a one

step update is used with the quadratic penalty error controller, the

small Time-to-go couples with terminal errors resulting from the

simplified model to produce acceleration commands that grow

exponentially. Figure 2.3 depicts the acceleration commands from the

guidance law Gi, as a function of Time-to-go, for the same rangc and

velocity. As Tgo becomes small, the acceleration commands grow

exponentially, resembling the zero terminal error controller.
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CHAPTER III
CONSTRAINED CONTROL

In a missile guidance and control system, the function of the

autopilot is to realize the commanded acceleration. When the

acceleration is not realizable because of aerodynamic or structural

limitations, the autopilot generates the maximum allowed for each

axis. In effect, the autopilot saturates each axis of the commanded

acceleration independently and may significantly modify the resultant

vector. Therefore, when these control constraints are introduced, the

optimal control law discussed in the last chapter is no longer valid.

The optimal control law, given by Pontryagin's Maximum principle

for a linear system with a quadratic performance index, is found by

maximization of the Hamiltonian which is a quadratic function of the

state, control and adjoint variables [5,18]. In the absence of

constraints, this leads to a linear control law. With constraints, the

form of the control law is still linear provided the constraint is not

violated. Otherwise, the control Is equal to the constraint. Due to

the form of the constrained optimal control, one might assume that the

constrained control can be obtained by direct application of the

constraints to the unconstrained optimal control [5]. This technique,

while simple to implement, may not be optimal, and often will not allow

the terminal condition to be met.

In this chapter, the relationship between the constrained optimal

control and the suboptimal control formed by constraining the

15
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unconstrained optimal control will be discussed. It is shown that in

certain situations (initially constrained control), when feedback

controls are implemented, the two cases are identical. If the final

portion of the trajectory is on the constraint, however, the system will

not be able to satisfy the terminal boundary conditions unless the final

condition is in the reachable set of the constrained control.

Therefore, the initial (unconstrained) segment of the trajectory should

be adjusted to account for the final constraint.

Because uncertainty with respect to the final state is assumed

(which will also account for unmodeled errors in the dynamical system),

a one-step update will be used.

Consider the state variable of the first order example and the form

of the quadratic cost. The common technique in air-to-air guidance is

to select relative Euclidian coordinates as the state, and control to a

zero set point. This establishes the value of the state variable as the

difference between the missile and target inertial positions. And

consequently, the boundary condition for the relative state is always

zero. Another technique better suited to solving this optimal control

problem with inequality constraints on the control is to choose the

seeker gimbal angles as the states, use the linear control law to

determine the optimum angles, allow a non-zero set point, and solve the

differential system to include the actual boundary conditions. Also,

the usual quadratic cost penalizes the deviation from the final state.

In this case, however, the intermediate cost is in large gimbal

angles. First the gimbal angles are structurally limited. This is, in

fact, a state variable constraint which is not modeled in the

optimization. A larger angle increases the probability of exceeding the
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gimbal angles limit when the target maneuvers. Second, because the

missile has two to three times the velocity of the target, larger gimbal

angles will lead to higher accelerations during the terminal phase if

there are errors in the estimate of the optimal angle due to an input

parameter such as relative position, velocity, acceleration, or Tgo.

Constrained Control Solution

Given: x(to), y(tO ) with x(tf) = y(tf)

Determine the optimum control such that:

J f tf(x + u2) dt is minimum

to

subject to the constraints Iu(t)l 4 a and (t) = u(t).

Writing the Hamiltonian

H =x 2 +u 2 +P'u

The adjoint is given by the solution of

P = -Hx = -2x

and the u which minimizes H is found to be:

-a sgn (P) IPI > 2a
U {-

1: /2 P IPI < 2a
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Consider first the times when the control is unconstrained, then

U= 0 U=-- + X x

And, if T tf- to  .

y(tf) x(to)e-T (t-tO)
x(t) = -T  T -T } e

e e e -e

x To~ Atf -(t-t)

e -T e T-T

and --
y(tf) x(to)e -(t-t O)

u(t) { T.- - T T } e
e - e e -e

TL

X(t)eT yt (t-tO)

-eT _ eT - e T

Now, let t = to * current time. Therefore,

cosh{ tf - to, y(tf) + Af
X(t0) = uto) = " sinh{ tf t} xlt) + snh{ tf - to)

which can be made exact by an integrating factor and integrated

directly. The result is a closed form expression for x at any time:

X(t + At sinh { tf - (t0 + At)) y(tf)At

0 sinh{ tf- to 0 snh{ tf-
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Initial Constraints

Assume that the control will be on the constraint during the

initial portion of the trajectory. In this case, the saturated value is

the optimal control. It is possible to calculate the time that the

control will first become unconstrained. While the control law must

consider the sign of the state and control, for clarity, the following

equations assume a positive state, and therefore, a negative control.

While on the constraint, the state will follow:

x(t) = x(t O) - at

Setting the expression for the control equal to "-a" and solving for "t"

will provide a transcendental equation that gives the switching time

from constrained to unconstrained control:

-( tf-ts )
2yltf) - e a + xlt O) - a(tf - ts ) I

-( t

-e f x(tO) - a -a(tf-t s) I = 0

Here "to" is equal to the initial time, "tf" the final time, and "ts"

the switching time.

Final Constraints

If the value of the optimal control is larger than the constraint

during the final portion of the trajectory and the control law does not

anticipate this fact, the boundary conditions will not be met. However,

there may exist a Time-to-go and state such that the subsequent use of

the saturated control will cause the system state to Just satisfy

. ,. -
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boundary conditions. If the control is equal to the saturated value "a"

and the state is equal to:

x(t s ) = y(tf) - a(tf-ts),

then the terminal boundary conditions will be met.

Because the closed loop control is not defined at t = tf, and the

control law only provides the fact that

x=U

the open loop control expression must be used to determine this time.

Solving for time in the open loop equation with:

y(t s ) = y(tf) - a(tf-ts)

u(t s ) = a

tf = t

T =ts -t

y(t5) x(to)e-T (ts-t O) .

u(t) = f , - e e e
e -T e T -T

T
x(to)e Y(t 5 ) -(ts-t 0 )

- T _ - T  eT . - T  e

e _-e e _-e

The result is the following equation for t

a sinh{ts-t O} - { y(tf) - a(tf-t s ) } cosh{ts-tO} + x(tO ) = 0

This equation can be solved for the associated switching time. Then,

this time "tis", and boundary condition--

x(t 5) = y(tf) - a(tf-ts)

are used in the solution of an unconstrained optimal control problem.

The result will be a control that meets the actual boundary condition

y(tf) at "tf".

* * . . .
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Examples

The following figures illustrate the use of the computed switching

times to account for boundary conditions. In these first order

examples, the initial value of the state is 1, the initial boundary

condition is the zero state, and the control is constrained to a value

of 1.1. If the terminal boundary condition changes, it does so at .5

seconds and is set again at 1. Also, in these examples, the following

definitions are used:

Unconstrained = There are no contraints on the control magnitudes.

Suboptimal = There are constraints on control magnitudes, but an

unconstrained control is calculated and passed

through the saturation function.

Constrained = There are constraints on control magnitudes, and

the control is calculated to account for the con-

strai nt.

Reachable Set = There are constraints on control magnitudes, and

the control is calculated to ensure that the final

control is off of the constraint.
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p-°9,
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Final State Value = 1.

Figure 3.3 UNCONSTRAINED CONTROL--MULTIPLE FINAL CONDITIONS

Figure 3.3 shows the system behavior when the terminal

condition is changed at t = .5. Again, there are no con-

straints on the control.
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Figure 3.4 SUBOPTIMAL CONTROL--MULTIPLE FINAL CONDITIONS

In Figure 3.4, the effect of the unanticipated final

constraint is illustrated. In this case, the final boundary

conditon is not met
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Figure 3.5 CONSTRAINED CONTROL--MULTIPLE FINAL CONDITIONS

Figure 3.5 shows the proper handling of the final

constraint. In this case, the unconstrained terminal

conditions are adjusted so that the final condition is

met with the saturated control.
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While the constrained control in Figure 3.5 does meet the boundary

conditions, the terminal condition is on the boundary of the reachable

set. Any additional change after the control is saturated (in the

direction away from the origin) cannot be controlled by the input. If

the control is going to saturate during the final phase, another

technique is shown in Figure 3.6. Here the control is placed on the

constraint until the switching time when unconstrained control is

allowed. This procedure will ensure that the control is in the linear

region for the terminal portion of the intercept and is a partial

alternative to the reachable state control algorithm presented in [6].

Summary

In summary, to optimally handle constraints two cases must be

considered. In the first case, a saturated control unsaturates prior to P

the final time. Here, the use of the saturation function is the proper

control. In the other case, however, the control is such that it

saturates during the terminal stages of the intercept. Now, the fact

that the control is going to saturate must be considered. In the case

of the first order trajectory, this is handled by changing the final

time and boundary condition of the unconstrained portion of the

control. Reversing the time that the saturated and unconstrained

control is applied ensures that the target remains well within the

reachable set of the missile control.
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CHAPTER IV
NONLINEAR CONTROL LAW

Numerous attempts were made to incorporate the attitude dependence

of the engagement in a state space model by including the Euler angles

in the model formulation and exploiting the properties of the bank-to-

turn missile. If these angles could be included, the control laws would

be optimal in the dynamic-programming sense because the same optimal

control laws would be used in the future £17). Considering that the

control inputs cause the change in the inertial and relative attitudes

and that the Euler angles describing the missile attitude and the seeker

angles describing the relative angular differences can be large, the

system matrices are time and control dependent. Consequently, the model

is nonstati onary and the limiting sol uti on of the algebraic RI ccati

equation is not appropriate. Working directly with the Euler-Lagrange

equations, approximate methods such as singular perturbations and the

method of averaging were attempted [19,20,21). But even with approxi-

mations, the result was a coupled set of nonlinear equations, and the

major value of the approximation methods was lost 1221. Consequently,

each effort was terminated when the assumptions and/or approximations

required for a closed form solution invalidated the purpose of

incorporating the increased complexity. The only resul t of these

tedious exercises was the author's agreement with Gupta et al. £6):

"When the detailed translational and rotational missile model is used,

the resulting TPBVP [Two Point Boundary Value Problem] is so complex

29

. .
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that it cannot be solved in real time even with the most advanced

digital hardware".

Instead, since the major problem with the current guidance laws was

the unmodeled constraints, a scheme was developed that would incorporate

the optimal guidance laws and still apply the acceleration commands

consistent with the control constraints.

Guidance Law

The seeker gimbal angles provide a direct indication of the target-

missile geometry. Using the seeker-to-missile body transformation

outlined in Appendix B and the dynamics approximations presented in

Appendix C, the following relationships can be derived:

wy= -P sin 4g - (Nz/u) cos g

Wz =  p sin g cos g - (Nz/u) sin eg sin g + (Ny/u) cos eg

where wy = missile rotation about the seeker y axis

W = missile rotation about the seeker z axis

eg = seeker elevation angle

g = seeker azimuth angle

Ny = acceleration along the y body axis

NZ = acceleration along the z body axis

u = missile velocity along the x body axis

p Z missile roll rate about the x body axis

These equations provide a method of generating the linear accelerations

to control the missile's relative attitude by controlling the gimbal

angles since the change in the seeker angles due to missile attitude is
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-yI and wz" A positive rotation about either axis causes a negative

change in the seeker angle. Therefore:

Gg = -oy = +p sin qg + (N /u) cos

$g = "-z = -p sin eg cos g + (Nz/u) sin eg sin 4g - (Ny/U) cos eg

Consequently, an "attitude controller" can be developed using the

first order control laws from Chapter III and steering from the advanced

guidance laws. The inertial controls are used to generate the "optimal"

trajectory (not accounting for constraints). Then these relative

directions are rotated to the missile body axis and compared to the

existing seeker angles to determine the optimal seeker angles. These

optimal angles are used as boundary conditions for a constrained control

law that relates the angles to the control inputs.

Longitudinal Control

Setting the state equal to the seeker angle eg, the control input

to 6g, and considering only longitudinal motion (p = Ny =0) the y

relationship leads to the following control:

(eT + e-T)G 20 o .N - T T op7

e . e-T e - co- c' g

where @opt = the e derived from the linear control law.

Lateral-Di recti onal Control

N_. Setting the state equal to the seeker angle ('g, the control

input to $g, and solving for N with p and Nz equal to zero:

,w,.......-.(eT + e' 2(p9 . t

N=+e "  " - T cosUe
e-ee eg

%41
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ROLL. While the gimba) angle g is controlled by the Ny

acceleration, the magnitude of this control is severely limited.

Therefore, to handle this constraint, the control law must be expanded

to position the missile such that the Nz acceleration can be used to

achieve the intercept. Since the gimbal angle qg is equal to the roll

angle difference between the maximum maneuver plane of the missile and

the relative target position, the azimuth angle can be used in place of

the roll angle difference to generate the roll rate command. Once the

roll rate command is incorporated, however, the approximation used in

the Ny equation is not always valid. When there is a large roll angle

difference, p will be the dominant control with a small contribution

from Ny (which will also help control adverse yaw on a higher order

system). As the roll angle difference approaches zero, the roll rate

will decrease while Ny continues to control the gimbal angle (g during

the terminal phase.

(eT + e "T  q 2 opt
P + { eT 7 e- T  eT e- T }

Time-to-Go

Even though Rigg's algorithm improved the performance of the

advanced guidance laws, it continued to underestimate the time-to-go

during the initial segment of the trajectory. This is because the

algorithm neglected the attitude of the missile when setting the X

inertial acceleration to the actual acceleration (x body axis) of the

missile. Rigg's algorithm is repeated here:

2RTgo = cVc + SQRT(Vc2 + 4AR)

.A
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where Tgo = time-to-go

Tb = time during which the inissile is accelerating

t time

R - range

Vc - closing velocity

A average acceleration

Amax = acceleration during boost

Antin = deceleration after burnout

As shown by Lee (23), the actual time-to-go is a function of the

trajectory (including constraints). While the constraints cannot be

easily handled, the difference between the inertial and body axis

accelerations can be corrected by considering the angular differences.

As seen from the Tgo formula, in addition to the estimate of

missile acceleration, the closing velocity (Vc) is used. This term is

substituted for the X component of relative velocity in the

derivation. Vc, however, is along a vector from the missile to the

target and not in the X direction. If the Euler angles that describe

the missile's orientation are included in resolving the difference

between the X acceleration command and the missile orientation, the

result is a cubic equation containing the direction cosines, inertial

positions, velocities, and accelerations.

A simpler technique is to correct the closing velocity, and resolve

the component in the x missile direction. This is accomplished by

calculating the spherical angle (Aoff) between the missile x axis and

target and then using the x component of the closing velocity in the

computation of the x commanded acceleration.
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Aoff =tanI (Z2 y2)}

A = A cos (Aoff)

where x = relative x distance to the target in the body axis frame.

y = relative y distance to the target in the body axis frame.

z = relative z distance to the target in the body axis frame.

Another minor correction was made to the Tgo algorithm by

correcting the estimate of average acceleration which is A above. The

algorithm calculates this value and then, if the time is greater than

the motor burn time, the acceleration estimate is set to Amin. However,

if the time-to-go is less than the missile burn time, then the second

component, the deceleration term, is added to the acceleration term in

the computation of average acceleration.

A better acceleration estimate is calculated if all three cases are

considered separately:

I. intercept during the boost phase, time less than Tb;

Amax (Tb - t)
Tgo

2. intercept during the coast phase, time less than Tb;

Amax(Tb - t) + Amin(Tgo + t - Tb)

Tgo

3. current time greater than accereration time;

A- Amin
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CHAPTER V
RESULTS

Four topics have been discussed with respect to the control of the

bank-to-turn missile. These are the effect of constraints on control,

the linear optimal control laws, the improvement of the Time-to-go

estimate, and a nonlinear control law. The results of additional

evaluations, the modifications incorporated, and the nonlinear control

law will be presented here.

Constrai ned Control

The four trajectories used to evaluate the effect of constraints

are shown in Table 5.1:

Table 5.1 Boundary Conditions

Initial Terminal Condition
Trajectory Conditions Time Value

1 1 0 0

2 0 0 1

3 1 0 0
.5 1

4 0 0 1
.5 0

35! '-. i' .. . i- .-i. ..- . i ; .. , . . , :.: : . . • . .. . .i , . - . k
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Table 5.2 presents the cost for each of the trajectories. Here the

same terminology is used that was introduced in Chapter III. As seen

from the table, the optimal control is the minimum cost solution that

meets the final value when used with the trajectories that have a single

boundary condition (trajectories 1 and 2). Also as expected, a control

constraint increases the cost, even if it is handled in an optimal

fashion, if there is no change in the terminal boundary condition.

Table 5.2 Cost Function

Trajectory Control Cost Final Condition

1 Unconstrained 1.323 Yes
Suboptimal 1.325 Yes
Constrained 1.325 Yes

Reachable Set 1.325 Yes

2 Unconstrained 1.303 Yes
Suboptimal 1.243 No
Constrained 1.311 Yes

Reachable Set 1.392 Yes

3 Unconstrained 1.740 Yes
Suboptimal 1.654 No
Constrained 1.718 Yes

Reachable Set 1.722 Yes

4 Unconstrained .816 Yes
Suboptimal .816 Yes
Constrained .917 Yes

Reachable Set 1.312 Yes

The trajectories with changing terminal conditions, where the

constraint is never violated, however, display some unexpected

properties and have been included as Figures 5.1 through 5.3. First,

the optimal control may not lead to the lowest cost. If the control

expects to be on the constraint during the final portion of the

".A
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trajectory, it increases the control during the initial phase to insure

that the final condition is met. If the final condition is changed,

then the increased control may not have been required. In fact, the

•- increased control can result in a larger displacement from the new

terminal condition. The result is an overall higher cost for the

complete trajectory.

Second, with a discontinuous boundary condition, the constraint may

not lead to an increase in cost. Again, this is a function of the

initial conditions and the change in the final condition. The

explanation for this effect is similar to the first in that the

constraint may keep the state closer to the second terminal condition.

While these are interesting observations, it should be noted that

the changes in the terminal boundary condition are quite severe and that

these effects are dependent on the changes and when they occur. Also,

if the boundary condition is within the reachable set, the only control

that can always meet the condition is the properly formulated optimal

control.

Linear Optimal Control

Generally, the performance of a guidance law for air-to-air

missiles is measured by the inner and outer launch boundaries. These

are defined as the minimum and maximum range from which the missile can

be launched and achieve a hit. The boundaries are a function of the

initial conditions of the engagement such as speed, altitude, relative

attitude, and geometry. The geometry of the engagement Is defined by

the off-boresight angle and the aspect angle. Figure 5.4 depicts these

angles. The off-boresight angles (OBA) are defined as the angles
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(azimuth and elevation) between the missile velocity vector and the

LOS. The aspect angles are defined as the angles, measured from the

tail of the target, between the target velocity and the missile LOS. In

all of the cases studied, the target and missile are co-speed (.7 Mach)

and approximately co-altitude (10,000 feet) at launch.

Previous work [1,9] with the linear optimal control presented by

Fiske [8) utilized an "evasive" target maneuver developed by the Air

Force Armament Laboratory. This maneuver has two phases. For a target

aspect angle less than 90 degrees (tail shot) at a range of 6000 feet,

the target accelerated into the missile at an angle of 45 degrees (down)

with respect to the vertical. For a target aspect angle greater than 90

degrees, the target also rolls into the missile, except that this time

the angle Is 45 degrees up with respect to the vertical. In each case,

at one second-to-go the target rolls to 180 degrees and accelerates down

(positive Z direction). Unfortunately, this is not a very evasive

maneuver. To begin with, by automatically rolling into the missile the
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maneuver actually reduces rather than increases the angular travel, the

line of sight rates, and the average acceleration required. Also, for

the short range shots, the fact that the target is maneuvering at a

45 degree angle while the missile is waiting for the clearance delay (.4

seconds) reduces the amount of ROLL required to place the target in the

primary maneuver plane. Recalling the limitations of the missile and

the formulation of the guidance laws, much simpler and more effective

maneuvers can be devised.

First, consider the implementation of the target used for this

evaluation of the Linear Optimal Control Laws. The target is a three

(3) dimensional, nine (9) "g" maneuvering target. In order to prevent

the computational burden of integrating target accelerations for

velocity and position, the target is mechanized by computing the radius

of curvature and the angular velocity of a constantly accelerating point

and incorporating the equations as uniform circular motion. The plane

of maneuver for the target is determined by the target ROLL angle, an

input parameter. When the maneuver is initiated, the center of

rotation, radius of curvature, and the coordinate transformations are

computed. Then, the inertial positions, velocities, and accelerations

are computed by transforming the maneuver plane motion, a simple

function of the angle of rotation referenced to the start of the

maneuver, to the inertial reference system.

Using this target, a deterministic evaluation of the inner launch

boundary was initiated using an improved six degree of freedom

simulation based on the simulation used in Ell. It soon became obvious

that the concept of inner and outer launch boundaries for these

missile/guidance law combinations did not apply. The launch boundaries
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are supposed to define an envelope within which the missile will

intercept the target. This is not the case with the bank-to-turn

missile and linear guidance laws. To illustrate this point, consider

the trajectory shown in Figure 5.5. The launch range is 5000 feet, the

OBA is 40 degrees, and the aspect angle is 180 degrees. At launch, the

target begins a level 9 "g" turn away from the missile. Midway through

the flight, the guidance law essentially has the intercept conditions

met and reduces the acceleration commands. Toward the end of the

attempted intercept, however, increased accelerations are required, the

missile control saturates, and the missile misses a relatively simple

intercept. The miss was not caused by a lack of maneuver capability,

the basis for the launch envelope, but by neglected attitude dependent

constraints.

6..
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Time-to-go

The incorporation of the modified Tgo algorithm significantly

improved the estimate of this parameter. Since the actual Tinie-to-go is

a function of the trajectory, and the trajectory is a strong function of

Tgo, it is not possible to directly compare the algorithms. Therefore,

a comparison of the actual Time-to-go and the estimate of Tgo can be

made for trajectories with the same initial conditions.

After the simulated intercept, the time of the closest approach

(final time) was calculated. Simulated time was then subtracted from

the final time to determine the actual Time-to-go. This value is then

compared to the estimate of Tgo generated during the simulation.

Reprosentative results are presented in Figures 5.5 to 5.8. In these

figures, the actual and estimated Time-to-go is plotted versus the time

from launch. Figures 5.5 and 5.6 came from a run with an azimuth OBA of

400 and aspect of 1800 and an initial range of 7000 feet. Figures 5.7

and 5.8 are from the same geometry with an initial range of 5000 feet.

The first set of Tgo figures represents a relatively easy

- - trajectory where the missile actually reverses its initial direction of

acceleration during the intercept. Since Riggs' algorithm overestimates

the closure velocity, it consistently underestimates the Time-to-go.

The modified algorithm assumes that an intercept has been established;

therefore, it wil under or overestimate the Time-to-go depending on

whether the missile is leading or lagging the target.

The Tgo plots for the 5000 foot initial conditions illustrate th!

performance for a more difficult trajectory. Here, the average missile

acceleration is higher and it consistently lags the target. Since a

true intercept condition is not established until late in the intercept,
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the absolute performance of the modified Tgo algorithm is not as good as

the easier trajectory. Two points should be noted however. Just as in

Riggs' algorithm, the Time-to-go is underestimated during the higher "g"

trajectory when the missile is lagging the target. This error leads to

higher accelerations, and if possible, an intercept. Consequently, the

estimate results in a stable trajectory and the error will decay in

time. Also, the absolute estimate error is always smaller than Riggs'

algorithm. Table 5.3 presents the average Tgo errors for the four

trajectories presented in the figures.

Table 5.3 Average Tgo Estimate Errors

Initial Range Algorithm Average Error

7000 Riggs' .21

Modified .07

- 5000 Riggs' .26

Modified .16

Nonlinear Control Laws

The final item to be covered is the performance of the nonlinear

" control law derived in Chapter 4. The control law, along with G1, (and

an improved pro-nay guidance law) were incorporated in the simulation

outlined in Appendix C. The simulation was verified and compared

remarkably well with the larger, more complex simulation discussed

previously. (The complex simulation predicted a 75 foot miss at 3500

feet versus a 193 foot miss; other results were closer.)

The trajectory presented here has the same Initial geometry as the

previous engagements--40 degree OBA with a 180 degree aspect angle. The

initial range varies from 3400 feet to 7000 feet.
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The performance of the nonlinear control law was significantly

better than GI. First, the nonlinear, or Bank-to-turn (BTT), la,.. was

able to achieve a hit (miss distance less than 20 feet) inside the range

of GI. Secondly, in every case where GI was able to score a hit, the

miss distance of the BTT control law was at least 25% of GI. Also,

throughout the trials, the BTT accuracy was consistent while the

performance of the linear guidance laws was quite erratic. And third,

the time to intercept for the BTT law was less than the linear control

law.

Four launch ranges are presented: 3400, 3500, 5000, and 7000

feet. Table 5.4 summarizes the results of these launches.

Table 5.4 Control Law Performance

Initial Control Miss Time
Range Distance (sec)

(feet)

7000 GI 19 2.75
BTT 4 2.61

5000 GI 37 2.20
BTT 4 2.15

3500 GI 193 1.75
BTT 5 1.65

3400 BTT 52 1.70

The details of any number of trajectories could be presented, but

the most instructive are the runs from 3500 feet. Figures 5.10 and

5.10B contain the trajectory and acceleration commands for the BTT

simulation, and Figures 5.11A to 5.11B have the results of GI. Since

both sets of Nz commands are saturated for most of the trajectory and

[..z
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BTT only deviates 22 feet in altitude, it is obvious that a hit could

not be achieved from a shorter initial range unless the roll rate is

increased to allow a quicker roll and turn. The reason for the improved

performance is also clear. Neglecting the constraints in the guidance

law results in a rolling attack as the acceleration vector is rotated by

unequal limits. Consequently, it is more difficult to control the roll

angle which is the real control over the direction of the acceleration

vector, and roll rate commands stay large during the run. Since the BTT

control law generates a ROLL command consistent with the Nz command, the

ROLL angle is properly regulated, and roll rates decrease to 5 to 7

degrees per second during the terminal phase of the intercept.

I..

I.'

% *. . . *. .
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CHAPTER VI
CONCLUSIONS

This research has identified and corrected a major shortcoming in

the formulation and implementation of advanced guidance laws for a Bank-

to-turn missile. The Bank-to-turn (BTT) guidance law was demonstrated

on a six degree of freedom simulation developed to support the analysis

of advanced guidance and control laws.

The most significant limitation of the advanced guidance techniques

was the neglect of inequality constraints on the control variables.

These effects were evaluated using a one-dimensional model that

highlighted the effects of the constraints and identified a method to

incorporate them in the formulation of the guidance law. The most

significant conclusion is that while control saturation is optimal for

an initial constraint, final constraints pose particular problems and

must be anticipated by adjusting intermediate boundary conditions for

the unsaturated portion of the trajectory.

A careful analysis of the trajectories that result from the linear

guidance laws indicated that the launch envelopes determined by past

research were not completely correct. In fact, an evading target could

use the limitations imposed by the missile acceleration control

constraints and generate a miss even in the heart of the missile launch

envelope.
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Rigg's algorithm, used in the computation of the Time-to-go, was

improved by accounting for the angular differences between the velocity

vector of the missile and the direction of the target.

Lastly, the incorporation of the first order terminal controller

mentioned above as an "attitude" controller resulted in a nonlinear

Bank-to-turn guidance law that exhibited exceptional performance. The

guidance law was able to limit the miss distance to four or five feet

inside the launch envelope, shorten the time of flight when compared to

linear guidance, and decrease the inner launch boundary to a point where

a near constant maximum control still resulted in a hit.

+ ++,
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APPENDIX A
TASC LINEAR GUIDANCE LAWS

The linear guidance laws G1 and G2 developed by Fiske [8) are

reproduced here to provide an indication of the type of control laws

under discussion. Guidance laws G3 and G4 are an extension of G1 and G2

that add first and second order missile dynamics. As a result, they

contain numerous additional terms and do not provide additional insight

into the form of the guidance laws. Consequently, they are not

repeated, and the reader is referred to [8]. Although Riggs and Verges

[11E continued with the work of [8) and studied guidance laws GLI-GL8,

these are not the same set of guidance laws but are G1 and G2 with

different Tgo computation.

Since the attitude of the missile was not considered, the guidance

laws are the same for each direction. Only the X direction is given,

the remainder are similar.

Guidance Law--GI

3(T~jo)3(Tgo)2

x = 3y + (Tgo) * 3y + (Tgo)3  vx

60
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Guidance Law--G2

X + (Tgo) + (Tgo) X

3y + Tgo)3y +gTgo

3(Tgo) e -X(g)+ xT(Tgo) 1 1 T

3+ (Tgo)3  xT 2 ~

T
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APPENDIX B
COORDINATE TRANSFORMATIONS

This appendix outlines the coordinate transformations used for the

control laws and the simulation and is included to clarify the

relationships of the various references. Unfortunately, there is no

standard set of Euler angles. Confusion arises from the use of left-

handed systems as well as the order, direction, axis, and reference of

the rotations. The following set of Euler angles is not the

"conventional" set as defined by Goldstein [24) but follows the

convention outlined in [25,26,273.

Definitions

Missile Euler Angles (Figure 5.1)

Those rotations, in the order of YAW, PITCH, and ROLL, are required

to re-orient the missile from the inertial reference frame to the

current body frame orientation. The inertial reference is defined as

the orientation of the body axis at time zero.

The body axis system is fixed to the center of gravity of the

missile with the positive x axis pointing forward along the fuselage

reference line. The positive z axis points downward toward the bottom

of the vehicle, with the y axis completing the right handed system (out

the right side).

YAW 4,: The angle between the projection of the x body axis onto the

inertial XY plane and the X inertial axis.

62
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PITCH e: The angle measured in the vertical plane between the x body

axis and the inertial XY plane.

ROLL *: (Bank) Angle measured in the yz plane of the body system

between the y body axis and the YX inertial plane.

Seeker Angles (Figure B.2)

The orientation of the seeker line of sight (LOS) and missile body

axis are defined by seeker gimbal azimuth and elevation angles 4 g and

9g, respectively.

GMB PSI 4ig: The angle between the projection of the LOS onto the

missile xy plane and the X body axis.

GMB THT eg: The angle between the LOS and the missile xy plane.

.4

. . . . . . . . . .-. .
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- 7*PARALEL TO

Figure B.1 MISSILE REFERENCE SYSTEM

e IF

Zs

B s z

ZB

Figure B.2 SEEKER REFERENCE SYSTEM
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Transformations

Missile Inertial to Body Axis 
P

YAW: YAW is a clockwise rotation about the inertial Z axis while

looking in the positive Z direction.

X
x
'I

Y

y'

Figure B.3 YAW ANGLE ROTATION

(x' Cos 1 sin , 0
y' -sin 4. Cos 4. 0
z' 0 0o) (Z)

PITCH: PITCH is a clockwise rotation about the current y' body axis

while looking in the positive y' direction.

x

zo zoo

Figure B.4 PITCH ANGLE ROTATION

( cos 0 0 -sin 8
of01 0 I y'

z sin a 0 cos z' "
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ROLL: ROLL is a clockwise rotation about the current x" axis while

looking in the positive x" direction.

.- 1low y

z z

Figure B.5 ROLL ANGLE ROTATION

X 1 0 0 X'0 Cos sin z".:

-sin Cos

Combining the three rotations in the proper order generates the general

transformation from inertial to body coordinates:

cose cos4, cose sine, -sine
D sin4 sine cos,! - cos$ sine sine sine sin 1 + coso cos(, sine cose

cos, sine rcs,1 + sin4 s!n4, coso sine sin4, - sin. cos, cost cose

Since the transformation is orthogonal, the transformation from body to

Inertial is the transpose of D.

Missile Body to Seeker LOS

Seeker Azimuth: The seeker azimuth angle, gimbal psi (g), is a rota-

tion about the z body axis while looking in the

positive z direction.

. .- " k
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XB

YB

Figure B.6 GIMBAL AZIMUTH ANGLE ROTATION

(yo -si . .
. . . . . . .0

Seeker PITCH: The seeker PITCH, gimbal theta (e 9), is a rotation about

the y' seeker axis while looking in the positive y'

direction.

x

Figure B.7 GIMBAL PITCH ANGLE ROTATION

Xs0-si.e)
"'"" 6S) coseg

z i 99 0 Co.
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Consequently, the final transformation from the body to seeker reference

is:

(Cose 0Cos Cos 9 sin -sin o

sin 8 Cos p sin e si , Cose
9 gsin4 g



APPENDIX C

SMALL SIMULATION

Appendix C presents the approximate equations of motion and code

for the first order missile simulation. The appendix is divided into

three sections: the equations of notion, the seeker model, and the

simul ati on.

Missile Equations of Motion

The first section contains the derivation of the approximate

equations of motion used in the simulation to transform control inputs

to Inertial Euler angle rates.

Using the Euler angle definitions of Appendix B, a transformation

can be derived that accounts for the effect of the control inputs,

linear accelerations, and roll rate on the inertial attitude of the

missile [26,291.

Two sets of relationships are required. The first is the

transformation between the body axis rates: p, q, and r, and inertial

Euler angle rates $ . The second relationship is rhe response of the

missile to input commands. The following derivation follows [26).

Definitions

The linear velocity of the missile, expressed in terms of body axis

coordinates is: V = ui + vJ + wk

where u = forward velocity
v = side velocity
w = vertical velocity

69
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The angular velocity of the missile also expressed in the body reference

system i s:

w= pi+ qj+ rk

where p = ROLL rate

q = PITCH rate

r = YAW rate

Angular Velocity Transformation

Because the Euler angles are defined in YAW, PITCH, ROLL sequence,

this sequence must be maintained in determining the angular velocity

transformation.

Resolve components of YAW rate

In the case of straight and level flight, the inertial axis system

remains aligned with the z body axis for all , therefore,

r=

ZZ

F e YT

Figure C.1 YAW RATE COMPONENTS--LEVEL
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7' 7

With a positive PITCH attitude, the missile , has components on

both the x and z body axis while the pitch rate is not affected.

p = - sin 9

r = cos e

,- sin a

-
z

Figure C.2 YAW RATE COMPONENTS--PITCH UP

..
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A ROLL angle will not change the effect of on p, and the PITCH

and ROLL rate components are:

q = q, cos sin

r = cos e cos

r =$uCos 6Cos

z

Figure C.3 YAW RATE COMPONEl4TS--ROLL
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Resolve components of PITCH rate 5

With the missile in a positive PITCH attitude, it can be seen

immediately that the YAW angle will not have any effect on the

resolution of the inertial PITCH rate. Also, when pitched up, the y

body axis remains in the X-Y inertial plane. Consequently, an inertial

PITCH rate will equal the body axis rate:

q

Figure C.4 PITCH RATE COMPONENTS--PITCH

Once the missile has a nonzero ROLL angle, components of S will

show up as:
q = 9 cos , ,.-O,

r = -S sin "

q=i Cos O T

Figure C.5 PITCH RATE COMPONENTS--ROLL
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Note that the body axis ROLL rate p is not affected by since 9 is

measured with respect to an axis orthogonal to the x body axis.

Resolve the components of ROLL rate

Since is measured along the x body axis by definition, it will

affect the value of p only.
p=

Combi ned Transformation

The components of the inertial angular velocities with respect to

the missile body axis can be combined to give the following

transformati on:

p10 -sin e
0 Cos * sin € cos e)

r)0 -sin Cos €Cos

Inverse Transformation

In order to account for the affect of the control inputs on the

attitude of the missile, the inverse of the above transformation is

needed. The determinant of the transformation matrix, however, is equal

to the cos 9. Consequently, at t90 degrees of PITCH, the inverse of the

. transformation is not defined, but from the geometry of the

transformations, the inverse can be seen to be:

41 p

4=q

t -=r
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When the cos 0 0, then the inverse of the transformation can be

computed as:

1 sin tan 0 cos tan 0(1 =Cos *-sin, (q
0 sin 0/cose cos 0/cose r

Missile Dynamics

In order to determine the effect of control inputs, the equations
of motion of the missile must be analyzed. Since the missile has six

(6) degrees of freedom (forward, sideways, and down translation as well

as the PITCH, ROLL, and YAW rotation), six simultaneous equations are

required. Using the linear force and moment relationships expressed in

an accelerating reference frame (with (dV/dt)i = (dV/dt)B + w x V), the

following equations can be derived [25,26):

Fx =m(; + qw- rv)

Fz = m(; + pv - qu)

Fy = m(; + ru - pw)

2 2G = Iy - pr (Iz - Ix)+ (p r) Ixz

Gx = Ix + qr (Iz - Iy) - ( + pq) Ixz

Gz = Iz + pq (Iy - Ix) - (qr - ) Ixz

Here, the left hand side represents applied forces (F1) and moments (Gi)

while the right hand side provides the missile response as a function of

moments of inertia and body referenced velocities.
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Equating the applied accelerations to the control inputs, and

incorporating the inverse transformation (e * 900):

Nx /o0 -V\ 1 0 -sin 9
Nz + v -u 0 cos 0 sin 0 cos (N) y; \-W 0 u (0 -sin Cos Co

This set of equations, however, cannot be used to determine the attitude

dynamics resulting from control inputs since the inverse of:

/0 w cos 0+ v sin w sin coso -v cos * cos

v -u cos € -v sin 9 - u sin 0 cos 9

-u sin 0 w sin e - u cos * cos /

does not exist.

Using the applied accelerations:

F/m = + qw - rvx

F/ = + pv - quz

F y/m = + ru - pw

and restricting the missile velocities to the x (forward) direction

only, then

and Nx =u Nz = -qu N =rux y
These assumptions remove higher order dynamics about the center of

gravity of the missile (Dutch roll, Short Period, Phugoid Oscillations,

and Directional/Spiral Divergence) but still allow dynamics associated

with the center of gravity.
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Using these approximations and the inverse angular velocity

transformation, we have the following relationships:

S= p -sin * tan e (Nz/u) + cos * tan e (Ny/u)

= -cos * (Nz/u) - sin t (Ny/u)

= -sin 0/cos 0 (Nz/u) + cos 0/cos 0 (Ny/u)

Seeker Model

While the above relationships provide the necessary equations to

model the missile motions, the missile actually uses a seeker to

determine the relative position of the target. Consequently, a seeker

model is required. Rather than model the internal motions of the seeker

gimbals, seeker error sources, and the stabilization loops [7], a

simplified approach is taken where the LOS angles are propagated via:

GMB Theta = DLOSQ - wy

GMB Psi = DLOSR - wz

where DLOSQ = PITCH line of sight rate

DLOSR = azimuth line of sight rate

wy = Missile motion affecting eg

/z = Missile motion affecting pg

The LOS errors are determined by calculating the difference in the

predicted target location (using Gimbal angles), and the actual target

location (using simulation results). Assuming a type 1 system, the

feedback transfer function from 0g (or (p) to tracking angle error e

(assuming perfect stabilization and no abberations) is

. . -. ..-.

,. . . . . . . . . . . .
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Then, at low frequencies, the LOS rate is proportional to the tracking

error [7]. Therefore, the gimbal errors are used with a proportionality

constant to determine the LOS rate. Gimbal motion due to missile

angular velocities, wy and wz, are simply body rates transformed to the

seeker coordinate system.

Simulation

The simulation consists of a 15 state model that is propagated

using an Adams Predictor-Corrector [19,28] with a Runge-Kutta start

up. The equations of motion are contained in the subroutine MODEL while

other routines are used for initialization and output. The states are

relative cartesian positions and velocities, target ROLL angles, missile

Euler angles, and missile gimbal angles. Inputs are linear

accelerations Nx, Ny, Nz , and missile ROLL rate.

The simulation is divided into three (3) parts so that it can be

run on a microcomputer in 40K COM files. The code, however, is ANSI

standard FORTRAN and with two changes for file handling, was run on a

VAX 1170. The first part initialized the variables and simulated the

trajectory. Data were stored in two data files W1.DAT and PLOT.DAT.

These files were read by the second and third programs for data

reporting, postflight miss distance, Tgo analysis and plotting. Since

most of the subroutines are straightforward input-output, they are not

included. The code used to initialize the routines and the subroutine

MODEL is included for illustrative purposes.

As mentioned earlier, the simulation had 15 states: the usual nine

(9) for cartesian positions, velocities, and accelerations, two (2) to

propagate gimbal angle dynamics, one (1) (unused) for target ROLL angle,

5,4
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and the remaining three (3) for the missile Euler angles. Linear states

are propagated without the effects of inertia or drag. But if the

angular states were also propagated by assuming an instantaneous and

perfect response without damping, excessive rates would develop.

Therefore, it became obvious that the bandwidth of the angular

velocities had to be limited in order to produce reasonable results.

Since the effects of the linear accelerations on the angular rates no

included a delay, the direction of the missile indicated by missile

velocities and Euler angles was no longer consistent. Since each was

propagated independently, by the end of the run, a three to five degree

discrepency would develop between them. In effect, there were too many

states. Consequently, at each update, the Euler angles are corrected to

agree with the angles generated by the linear velocity terms.

. . .
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SUBROUTINE MODEL(TIME,YONEYPRIMEHIT)
IMPLICIT REALI8 (A-I,K-Z)
LOGICAL HIT
REAL PLOTX1 ,PLOTX2,PLOTY 1 PLOTY2,PLOTZ1I PLOTZ2
REAL MINX,MINY,MAXXMAXY
INTEGER I ,NJSTATEJINPUTJCNTRLJTIMEJLIMIT,JROLL,JOB
INTEGER INCNX, INCHY ,NPLOT ,NPTS
DIMENSION YONE( 15) ,YPRIME( 15)

* COMMON /PLOT/PLOTX1(25) ,PLOTX2(25) ,PLOTY1(25) ,PLOTY2(25),
* 1PLOTZ1(25) ,PLOTZ2(25) ,NPLOTNPTS

COMMON /TRGT/TRG XITRG YITRG ZI,
* . ITRO VXI1,TRG VYI,TRG VZI,

2TRG AXI,TRG AYI,TRG AZI
COMMON /SET/ALTID8,GMB TH0,GMB PS8,RNG8,TRG Vs
1ASP TH8,ASP P58,MSL V8,THETOPHIS,P518,TH8,CSPSISSNPSIS,
2SNTHS,MISS DSSTEPDLAY SWTRG XISTRG YI8,TRG ZIG,
3TXOTYOPTZOOLD T,TRG PS8,TRG TH8,TRG PHI ,Jt-AN

COMMON /MSL/Y( 15) 9,U(4) ,TGO HTiRNG I ,VC
COMMON /OUT/W 1(25,s25)
C OMM ON /SEEK/ SEEK 11,SEEK 12,SEEK 13,SEEK 21,
ZSEEK 229SEEK 23,SEEK 31,SEEK 32,SEEK 33,DLOSQDLOSR
C OMM ON /OPTION/ JCNTRL,JTIMEJLIMITJROLL

C
C TRIG FUNCTIONS FOR DEGREES
C

SIN DGCX - DSIN(DG TO RD X X)
COS DG(X - DCOS(DG TO RD X X)

C
GRAy - 32. 1725
DG TO RD - .0174532925
RD TO DO - 57.29577951
Pi - 3. 141592654
ThOPI - 6.293185387

* E - 2.7182819
C
C TARGET CONSTANTS
C

NMAX -9.8
C
C MISSILE/AUTOPILOT CONSTANTS
C

W PHI - 15.
W THETA - 15.

* PSI - 15.
LAMDA X - 18.
LAMDA Y - IS.
LAMDA Z - 18.

AMAX - 589.
AMIN - -38.
DURAT - 2.6
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DLAY SW - 8.4
GAMMA - 1E-4
NZ MAX - 188.XGRAV
NY MAX = 5.*GRAV
P MAX = 588.*DG TO RD

C
MSL XI -YONE(1)

MSL YI =YONE(2)

MSL ZI aYONE(3)
MSL VXI = YONE(4)
MSL VYI - YONE(5)
MSL VZI = YONEG6)

C LIMIT ANGLES TO 2 XP1
C

PHI - ONE(S)

C
C CONSTRAIN PSI ScTHETA TO VELOCITIES
C

MSL IXY - DSQRT((MSL VXIfl2) +' (MSL VYI*X2))
PSI - DATAN2(MSL VYIMSL VXI)
THETA - DATAN2(-MSL VZI,MSL IXY)

VONEC?) - THETA
YONE( 18) - PSI
D PHI - YONE(11)
D THETA - YONEC 12)
D PSI - YONE( 13)
GMBTHT - VONEC 14)
GMBPSI - VONEC 15)
IF(DABS(PHI).GT.TWOPI)PHI -PHI-
1DSIGN(TWOPI ,PHI)NDINT(TWOPI/PHI)
IF(DABS(THETA).GT.TWOPI)THETA = THETA-
1DSIGN(ThOPI ,THETA) KDINT(TWOPI/THETA)
IF(DABS(PSI).GT.TWOPI)PSI - PSI -
IDSIGN(ThOPI ,PSI) XDINT(ThOPI/PSI)

* IF(DABS(GMB THT) .GT.ThOPI)GMB THT = GMB THT -
1DSIGN(ThOPIG'B THT)EDINT(ThOPI/GMB THT)
IF(DABS(GMB PSI) .GT.TWOPI)GMB PSI - 6MB PSI -
IDSIGN(ThOPIGIB PSI)EDINT(TWOPI/GMB PSI)

C
C INERTIAL TO BODY DIRECTION COSINES
C

Dli - DCOS(THETA)XDCOS(PSI)
D12 - DCOS(THETA)NDSIN(PSI)
D13 - - DSIN(THETA)

C
D21 - DSIN(PHI)XDSIN(THETA)EDCOS(PSI)-
1 DCOS(PHI)NDSIN(PSI)
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D22 -DSIN(PHI)XDSIN(THETA)XDSIN(PSI)
I DCOS(PHI)KDCOS(PSI)
D23 -DSIN(PHI)XDCOS(THETA)

C
D31 -DCOS(PHI)XDSIN(THETA)XDCOS(PSI)+
1 DSIN(PHI)X*DSIN(PSI)
D32 -DCOS(PHI)XDSIN(THETA)XDSIN(PSI)-
1 DSIN(PHI)XDCOS(PSI)
D33 =DCOS(PHI)XDCOS(THETA)

-. C
C COMPUTE BODY COORD VELOCITY (BODY TO INERTIAL)
C

MSL VXB DSQRT((MSL VXIXX2) + (MSL VYIXX2) + (MSL VZIXX2))
--- I C

C CHECK FOR SINGULAR INVJERSE
C

IF(DABS(THETA-(PI/2.)).LE.DG TO RD) GOTO 188
C

All - DSIN(PHI)XDSIN(THETA)/(DCOS(THETA)XMSL VXB)
A12 - DCOS(PHI)XDSIN(THETA)/(DCOS(THETA)XMSL VXB)
A21 - DCOS(PHI)X(1/MSL VXB)
A22 - DSIN(PHI)X(1/MSL VXB)
A31 - DSIN(PHI)/(DCOS(THETA)MMSL VXB()
A32 - DCOS( PHI) A DCOS(THETA) XMSL VXB)

C
*188 CONTINUE

C COMPUTE PITCH RATES IN BODY AXIS
C

PM - D PHI - D PSIXDSIN(THETA)
GkM - D THETAXDCOS(PHI) + D PSIXDSIN(PHI)XDCOS(THETA)

C RM --D THETAXDSIN'PHD) * D PSIXDCOS(PHDX*DCOS(THETA)

C MXXTarget Equations of Motion MX
C MXXXMXX

C
IF(MIO I.LE.6686.)GOTO 288

TRO XI - TRO VXI X TIME + TRG XIS
TRO VI - TRG WYI * TIME + TRO YIS
TRO ZI - TRO VZI * TIME + TRO ZIS

C
4.' -TXO - TROXI

nYO - TRO YI
TZO - TRO ZI

OLD T m TIME
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JMAN -8

GOTO 368

C
268 CONTINUE

IF(*WIN.EQ.l) GOTO 258
C
C INITIALIZE I'WJUEVER
C
C COMPUTE TARGET ROLL ANGLE
C
C + TRG PHI - RIGHT ROLL
C - TRO PHI - LEFT ROLL
C

IF(TRG PHI.GE.180.) TRG PHI -TRO PHI -368.

IF(TRG PHI.LE.-19.) TRO PHI =TRG PHI + 368.
C
C DETERMINE THE RADIUS OF CURVATURE &ANGULAR VELOCITY
C

* TRG R- (TRG V8MK2)/(NMAXXGRAV)
PS DOT -RD TO DO * TR6 VS/TRG R

* 2j C
C COMPUTE DIR COSINES FOR AXIS OF ROTATION
C
C BODY TO INERTIAL
C

DTII -C0S DG(TRG THS)WCOS DG(TRG PS8)
DT21 -COIS DG(TRG THS)XSIN DG(TRG PS8)
DT31 --SIN DGCTRG TH8)
DT12 -SIN DG(TRG PHI)MSIN DG(TRG TH8)NCOS DG(TRG PSG)

I -COS DGCTRG PHI)XSIN DG(TRG PS8)
DT22 -SIN DOCTRO PHI)XSIN DG(TRG TH8)*SIN DG(TRG PS8)
I *COS DG(TRG PHI)MCOIS DG(TRG PS8)
DT32 -SIN DGCTRG PHI)*CCS DG(TRG THB)
DT13 -C05 DG(TRG PHI)NSIN DG(TRG TH8)ECOS DG(TRG PS8)
1 +SIN DG(TRG PHI)NSIN DG(TRG P98)
DT23 -COS DG(TRG PHI)*SIN DG(TRG TH8)MSIN DG(TRG PS8)
1 -SIN DG(TRO PHI)NCOIS DG(TRG PS8)
DT33 -COS DG(TRG PHI)*COS DG(TRG TH8)

C
C COMPUTE TXIS,TYI8,TZI8 (ORIGIN FOR ROTATION)
C

-%XP -86.

ZP a-TRG R
C

2TXIS - DT1NXP + DTI2NYP + DTI3NZP + TXO
TYIS - DT21NXP + DT22*YP + DT23WZP + flO
TZIS - DT3INXP + DT32NYP + DT33MZP + TZO
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C
C RES TR P8FRNWSSE

C
TRGP5 = 8.

C
VPA - 8.

C
~TMANP - 1R S SDT(IEODT

C
258 -CO TINUEOSD(T S

TROPS s TRG P58 4 P DOTTIMEOL T))

C
ZP - TRG RXCS DG(TRG PS)
VZP = + TRO VSXCS DG(TRG PS)
AZP - -((TRG V8XX2)/TRG R)XCS DG(TRG PS)

C
XP X - T X REI DTRO*Y PS) 1XZ
VXP Y1*-TRG2VXCOS DTRO*Y PS)2*Z
AXP Z = -(TRO* VSX2)/TR R)SI DG(TRG PS

C
TRO XI -DT1XXP * DT12VP + DT13P
TRG VI - DT21XP * DT22VP + DT23P
TR6 ZI - DT31XP + DT32VP + DT33ZP P

C
TRO VXI - DT11XVXP + DT12XVVP * DT13XVZP
TRO WYI - DT21XVXP + DT22XVYP + DT23XVZP
TRO VZI - DT3IXVXP + DT32XVYP * DT33XVZP

C
TRO X! - T1XAX + TI2XV D1XZ

TRO VI - TRG VI + TYIS
TRO ZI - TRO ZI + TZIS

C
C XXXXXXXXXXXXXXXXXXXXXXXX
C XXMX
C MXX Relative Target-Missile Pos cVol XX
C XXMX
C XXXXXXXXXXXXXXXXXXXXXXXX
C

306 CONTINUE
C

% XI HT - TRO XI - MSL XI
VI HT - TROVYI - MSLVYI
ZI HT - TRO ZI - MSL ZI
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C
RNG XI s XI HT
RNG YI = YI HT
RNG ZI = ZI HT

C
RNG I -DSQRTU(RNG XI**2)-4(RNG YIX2)+(RNG ZIXX2))

C
C CHECK RNG I
C

IF(DABS(RNG I) .LT.MISS DS)HIT=.TRUE.
IF(DABS(RNG I).LT.MISS DS)I.'RITE(l,l0l8)

* , IF(DABS(RNG I).LTI.MISS DS)RETURN
C

VXI HT - TRO VXI - MSL VXI
VYI HT = TRG VYI - MSL VY!
VZI HT = TRO VZI - MSL VZI

C
VC =(TRG VXI - MSL VXI) X (RNG XI)
1 *(TRG VYI - MSL VYI) X (RNG YI)
2 *(TRG VZI - MSL VZI) X (RNG ZI)
VC =VC/RNGI1

-. C
C CHECK VC
C

IF(VC E.EG.)HIT=.TRUE.
IF(VC .EQ.9.)WRITE(1q198O8)

* IF(VC .EQ.O.2'RETURN
C
C DETERMINE IF HIT
C

IF(IRNG I - DABS(VC)*(STEP.LE.MISS DS)HIT=.TRUE.
C
C CALCULATE THE INTERCEPT ASPECT ANGLE
C

VXB HT - D1lETRO VXI + D12*TRG 'Pr! + D13*TRG VZI
WeB HT - D21*TRG VXI + D22NTRG WYI + D23*TRG VZI

VZB HT - D31*TRG VXI + D32*TRG VYI + D33*TRG VZI
VBXZ - DSQRT((VXB HT**2)+(VZB HT**2))
ye HT - DSQRT((VB(ZE*2)+(VYB HT**2))

C
INT ASP - DATAN (VZB HT/VXB HT)
INT ASP - INT ASP * 6MB THT
IF(VXB HT.LT.S.) INT ASP -PI INT ASP

C
C

C MX Seeker Module MX

C
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408 CONTINUE
C
C SEEKER ANGLES (BODY TO SEEKER)
C

SEEK 11 =DCOS (6MB THT) * DCOS (6MB PSI)
SEEK 12 =DCOS (6MB THT) X DSIN (GMB PSI)
SEEK 13 DSIN (6MB THT)
SEEK 21 DSIN (6MB PSI)
SEEK 22 =DCOS (6MB PSI)
SEEK 23 =0.

SEEK 31 =DSIN (6MB THT) * DCOS (6MB PSI)
SEEK 32 =DSIN (6MB THT) 3* DSIN (GMB PSI)
SEEK 33 =DCOS (6MB THT)

C
RNG XB = DI1XRNG XI + D12*RNG YI + D13*RNG ZI
RNG YB = D21*RNG XI + D22*RNG YI + D23*RNG ZI

*RNG ZB = D31*RNG XI + D32*RNG YI + D33*RNG ZI
C

RNG BXY= DSQRT((RNG XB**2)+(RNG YB**2))
RN6 BZY= DSQRT((RNG ZBXX2)+(RNG YB**2))

C
C COMPUTE CORRECT LOS ANGLES
C

EP - DATA42 (- RNG ZB,RNG BXY)
EY - DATAN2 (RN6 YBRN6 XB)

C
SEEK EP - - 6MB THT + EP
SEEK EY - - 6MB PSI + EY

C
DLOSQ - (28.) * SEEK EP
DLOSR = (28.) * SEEK EY

C
* 6119 WY - SEEK 21*PM + SEEK 22*01M + SEEK 23XRM

6MB WZ =SEEK 31*PM + SEEK 32*QM + SEEK 33XRM
C
C
C *)
C MXXTime to Go MX
C XXX MX
C XXXXMXXXXXXXXXX*X
C

586 CONTINUE
C

IF(TGO HT.EQ.8.)HIT-.TRUE.
IF(TGO HT.EQ.8.)WRITE( 1, 938)TIMETGO HT
IF(TGO NT.EQ.8.)RETURN

C
IF(JTIME.EQ.2) SOTO 516

C
C RIGG'S TOO
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APAT -(AMAX M(DURAT-TIME).

1 AMINM(TOO HT *TIME-DURAT))/TOO HT .
IF(TIME.OT.DURAT) AWAT - AMINA

A INC - (VC**2) * 4.6*AI-ATMRNO I
IF(A INC.LT.8.) A INC - VC MM 2

TOO HT - 2. MRNO I/(DABS(VC) * DSQRT(A INC))

SOTO 688
C

518 CONTINUE

C MODIFIED RIOO"S TOO
C

AIIAT - (AMAX M(DURAT-TIME)4
1 AMINM(TGO NT +TIME-DURAT))/TOO HT
IF(TOO HT.LT.DURAT) AHAT - (AMAX M(DURAT-TIME))/TOO NT
IF(TIME.OT.DURAT) AHAT - AMIN
AOFF - DATAN2( RNO BZYqRNG XB)

AHT- ANAT X DCOS(AOFF)
A INC - (VCMM2) * 4.8MAATMRNG I
IF(A INC.LT.8.) A INC - VC MM 2
TOO NT -2. * RNO I/(DABS(VC) + DSQRT(A INC)) -

C
C MMMMMMMMMMMMMMMMMMMMMMMM
C MM U
C MMMMissile Control Law MM

C MMMMMMM

C

OLDU3 - U(3)
I NT TN4T - 80.8
INT PSI - 8.8

C
U( 1) - AMAX
IF(TIME.OT.DURAT) U(i) -AMIN

U(2) - 8.
U(3) - 8.
U(4) 9 .

C
IF(TIME.LT.DLAY SN) SOTO 788

C
IF(JCNTRL.EQ.2) SOTO 618

r C
C 01
C

TOO NT3 -TOO NT UTOO NT UTOO NT
CC11 3.MTOO HT/(3.MOAMMA + TOO NT3)
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CC12 -CCli I TGO HT
C
C ACCEL COMMAND IN FT/SECXE2
C

MSL AX! - (CCII*XI HT + CC12*VXI HT)
MSL AVI - (CCI1MY! HT + CC12*VYI NT)
MSL AZ! - (CC11XZ! NT + CC12MVZ! HT)

C
X CCJD - D11NMSL AX! + D12XMSL AYI + D13MMSL AZ!
U(2) -D21XMSL AX! + D22XMSL SY! + D23*MSL AZ!
U(3) -D3IXMSL AX! + D32*MSL AYI + D33*MSL AZ!

C
!F(JCNTRL.EO.3) GOTO 628

C
GOTO 648

C
618 CONTINUE

C
TPS .65XT60 HTXDCOS(GMB PS!)
!F(TPS.LT..85) TPS .85

C
U(3) - (PMEDS!N(6MB PS!) - DLOSQ + GMB WY)*
1 ((ENX(TP3) + EXN(-TPS))/(EXK(TP3) -EXK(-TP3)))

U(3) - U(3) * MSL VXB / DCOS(6MB PSI)
U(3) - OLDUS + U(3)*.85

C
GOTO 636

C
628 CONTINUE

C
XY CI'tD - DSQRT((X COIIDNN2) + (U(2)XN2))
INT TNT - DATAN2(-U(3),XY CMJD)
!NT TNT - 6MB TNT + (DLOSQ/26.) - !NT TNT
!NT PSI - DATAN2(U(2),DABS(X COMND))
!NT PS! - 6MB PS! + (DLOSR/28.) - INT PSI
TP3 -. SSNTGO NT
IF(TPS.LT..1) TP3 - .1

C
U(S) - -6MB TNTN
1 ((ENN(TP3) + ENE(-TP3))/(ENN(TP3) -EXN((-TP3)))

U(3) a U(S) + 2.N!NT TNT/(E*X(TP3) - E**(-TP3))
U(3) a U(3) N MSL VXB / DCOS(6MB PSI)
U MAX - U(S3) * (NY MAX / U(2))
!F(DABS(U(3)).GT.U MAX) U(3) -DS!6N(U MAXU(3))

C
TP2 -TPS

U(2) - .MB PSI N((ENN(TP2) + E*N(-TP2))
1 /(ENN(TP2) - E**(-TP2)))
U(2) - U(2) -2.N!NT PS!/(E**(TP3) - EXN(-TP3))
U(2) a U(2) NMSL VXB /DCOS(6MB TNT)
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TP4 -. 2XTGO HT

IF(TP4.LT..2) TP4 -. 2-EK-T))

U(4) + 4 MS PSI X((EXX(TP4) + Eg*(-TP4))
1 /(EXX(TP4) X(T4)
U(4) -U(4) - 2.XINT PSI/(E**(TP4) - EXX(-TP4))

SOTO 656
C

638 CONTINUE

TP2 - TOO HT
IF(TPZ.LT..2) TP2 -. 2
U(2) = 40MB PSI X((E**(TP2) + EX*(-TP2))
1 /(E**(TP2) - EX*(-TP2)))
U(2) - U(2) I MSL VXB / DCOS(GMB TNT)

C
648 CONTINUE

C
C ACCEL COMMANJD IN DES/SEC < P MAX
C

TP4 = .4*TGO NT
IF(TP4.LT..2) TP4 - .2
SN TNT - OSIN (GMB TNT)
CN TNT - DCOS COMB TNT)
SN PSI = DSIN COMB PSI)
CN PSI - DCOS COMB PSI)
K -- (CN TNT * SN PSI)**2 -(SN THT**2)
SCALE w CN PSI I DSGRT(((SN PSIX*2) + K)/C(SN PSI**2) -1.))
U MAX -P MAX I SCALE

U(4) + 4 MB PSI *C(E**(TP4) + E**(-TP4))
1 /(EKKCTP4) - E**(-TP4)))
U(4) -U(4) - 2.*INT PSI/(E**(TP4) - E**(-TP4))
U(4) = U(4) / SCALE

656 IF(JLIMIT.EQ.S) SOTO 788

IFCDABS(U(2)).GT.NY MAX) U(2) - DSIGN(NY MAXU(2))
IF(DAIBSCUC3)).GT.NZ MAX) U(3) - DSIGN(NZ MAXU(3))
IF(CNTRL.EQ.3) U(4) = U(4) - UC3)*
1DSINCGMB PSI)/(MSL VXB*DCOS(SMB PSI))
IF(DASS(U(4)) .GT.P MAX) UC4) - DSIGNCP MAXpU(4))

C

C *Xl* Equations of Motion for the Missilo IN**
C NIMI
C KKKKKIIKKIKIIIIIIKIIKII
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C
788 CONTINUE

C
DT - THETA RDTO DO

*DP - PSI * RD TO DO
DPH - PHI * RD TO DO
DST - 0MB TNT * RD TO DO
DOP -OMB PSI * RDTO DO
DGIP INT PSI * RDTO DO
DGIT- INT TNT * RD TO DO

U2 - U(2) / GRAY
U3 - - U(3) / GRAY
U4 - U(4) * RD TO DO
WRITEC I,1836)TIMEtTGO NT

WRITE( 191848) RNG I ,DGIA
WRITE( I 158) DOT 9DGP
WRITE(1,1666) DGIT9DGIP
WRITEC 1,1665) U3,U2,U4
WRITE(1,1676) DPHsDTDP
WRITE(1,18)MSL XIqMSL YIMSL ZI

C

C LINEAR INPUT SIGNS ON (49596) OPPOSITE TO THEI
C BANK TO TURN CONTROL LAW FORMULATI ON

YPIC1 OE4
YPRIME(2) - YONEC5)

A YPRIME(3) -YONE(6)
YPRIME(4) + D11*U(1) + D21*U(2) + D31*U(3)
YPRIME(5) -+ D12*U(1) + D22*UC2) + D32*U(3)
YPRIME(6) + DI3*U(1) + D23*UC2) + D33*U(3)
YPRIME(7) -S.
YPRIMECB) -YONE(11)
YPRIME(9) -YONE( 12)
YPRIME( 1S)i YONE( 13)

C
YPRIME( 14)- (DLOSQ - OMB NY)
YPRIMEC IS)i (DLOSR - OMB HZ)

IFD4(HT-(.2)L.OTOR)GT 1

C

YPRIME(11)i - W PHI * (YONE(1)-A12*U(2)+A11*U(3)-U(4))
YPRIME( 12)- - W THETA (YONE(12) + A22*U(2) + A2IMU(3))
YPRIME( 13)- - W PSI X (YONE(13) -A32*U(2) + A3IMU(3))

C- YPRIME(11)m 8.6
C- YPRIME( 12)- 0.9

*C- YPRIME( 13)- 6.8

RETURN
.4 C
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710 CONTINUE
C

YPRIME(l1)- - W PHI I (YONE(11) -U(2)/MSL VXB)
YPRIME( 12)- - N THETA I (YONE(12) + (U(3)/MSL VXB))
YPRIME( 13)- - W PSI *(YONE( 13) + U(4))

c- YPRIME( 11) - - W PHI X U(2)/MSL VXB)
C- YPRIME( 12)- - W THETA * + (U(3)/tISL VXB))
C- YPRIME( 13)- - W PSI * + U(4))
C

RETURN
C
1868 FORMAT(1H2o'VC - o8)
1S1S FORMATCIH2,'RNG 1 0'8)
1839 FORMATCIH29"TIME -'9E12.4,5Xq'TGO NT 9E12.4)
1646 FORMAT(1H2,'Rangein #,E1Z.4,5X,iAspect Angle-n ',E12.4)
1656 FORt'AT(IH2,'6imbal Theta 09%E12.49

12X,'Gimbal Psi 9 'E12.4)
1066 FORMT1H2,'Intercept Thota - 19E12.49

12XIntercept Psi - ',E12.4)
1865 FORMT(H2,'Nz 9 'E12.49

14X9'Ny - 'qE12.4,
24XP ='9E12.4)

1676 FORMT1H2y'Phi - ';E12.49
.0 12Xt'Theta - ,E12.49

22X,'Psi # E 12.*4)
198 FORI'Wr(1H2q'Xm m '9E12*4,

12X,'Ym 19'E12.4y
22X;,Zm .,E12.*49,/)
END
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SUBROUTINE INIT(JO89HIT)
IMPLICIT REAL*8 (A-I,K-Z)
LOGICAL HIT
REAL PLOTX1 ,PLOTX2,PLOTY1 ,PLOTY2,PLOTZ1I PLOTZ2
REAL MINXqMINYMAXXMAXY
INTEGER I ,NJSTATEJINPUTJCNTRLJTIMEJLIMITsJROLLJOB
INTGER INCHX, INCHY*NPLOTlNPTS
COMMON /PLOT/PLOYTX1(25) ,PLOTX2(25) ,PLOTYI(25) ,PLOTY2(25),

IPLOTZI(25) ,PLOTZ2(25) ,NPLOTNPTS
-. COMMION /TRGT/TRG XITRG YIqTRG ZI,
* 1TRG VX19TRG VYIqTRG VZI,

2TRG AX1 ITRO AYI ,TRG AZI
COMMON /SET/ALTIDSGMB THSGMB PS6,RNGSTRO VS1

1ASP THSASP PSSMSL VSTHETOPHI,PSISTHSCSPSISSNPSIS,
2SNTHS1 MISS DSqSTEPqDLAY SWTRG X109TRG YI6;TRG Z10,
3TX09TY0,TZ09OLD T;TRG PS~sTRG THSTRG PHIOJMb*J
COMMOCN /MSL/Y( 15) ,U(4) ,TGO HT,RNG I1,VC
COMMOlN /OUT/W 1(25,25)
COMMO0N /SEEK/ SEEK 119SEEK 12,SEEK 13,SEEK 21,
ISEEK 229SEEK 23,SEEK 319SEEK 32jSEEK 33,DLOSOODLOSR
COMMION /OPTION/ JCNTRLtJTIMEJLIMITlJROLL

C
C TRIG FUN4CTIONS FOR DEGREES
C

SIN DG(X) - DSIN(DG TO RD I X)
COS DG(X) - DCOS(DG TO RD X)

C
IF(JOS.EQ.1) GOTO 1

C
C VSOLHD AT 1SSSS
C

VSOLND -637.43
K TO FT - 1.68894
DG TO RD m .6174532925
RD TO DO = 57.29577951

C
C Initial Conditions

ALTIDS 1,686.8

GMB THS .107
GMS PS6 m 46.8
RNGS - 3566.8
TRO VS = 6.9
ASP THS = 6.6
ASP P56 - 186.6
MISS DS = 29.
HIT - OFALSE.

C
C Target Manuever
C
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TRG PHI -- 90.
~JWJ=

C
C MISSILE
C

MSL VO 8.9
THETS 6 .8
PHIS - .8
PSI@ - ..

C
C INERTIAL TO BODY DIRECTION COSINES

D11 - DCOS(THETS)NDCOS(PSIS)
D12 - DCOS(THETO)*DSIN(PSIO)
D13 - - DSIN(THETS)

C
D21 - DSIN(PHIS)*DSIN(THET8)*DCOS(PSI0 -

1 DCOS(PHIS)*DSIN(PSIO)
D22 - DSIN(PHIS)*DSIN(THETS)*DSIN(PSIO8 +
1 DCOS(PHIO)NDCOS(PSIS)
D23 - DSIN(PHIS)*DCOS(THETS)

C
031 - DCOS(PHIS)*DSIN(THETS)*DCOS(PSIO) +
I DSIN(PHIS)*DSIN(PSIS)
D32 - DCOS(PHIS)*DSIN(THET9)MDSIN(PSleS
1 DSIN(PHIG)KDCOS(PSIS)

C. D3-

Y(2) S.
Y(3) -- ALTIDS
Y(4) -MSL V9 VSOUND K TO FT

* Y(5) -S.
Y(6) 9
Y(7) 0
Y(S) -PHI@

Y(9) - THETS
Y(1S) m PSIS
Y(11) - S.
Y(12) -S
Y(13) - S.
Y( 14) = 0MB THS*DG TO RD
Y(15) = OMB PSS*DG TO RD

C
C SEEKER ANGLES (BODY TO SEEKER)
C

SEEK 11 = COS DG(GMB THO) * COS DG(GMB PSO)
SEEK 12 m COS DG(GMB THS) * SIN DOCOMS P98)
SEEK 13 -- SIN DG(0MB THS)
SEEK 21 -SIN D0(0MB PS55
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SEEK 22 = COS DG(GMB PS8)
SEEK 23 - 8.

SEEK 31 -SIN DG(GMB TH8) * COS DG(G#-B PS8)
SEEK 32 - SIN DG(GMB THO) X SIN DG(GMB P58)

C SEEK 33 - COS D0(GMB TH8)I
DLOSO - 8.
DLOSR s 0

C TIME TO GO

C MISSILE CONTROL INPUTS

C
U( 1) IaS.
U(2) - .
U(3) - S.
U(4) a 0

C
C TARGET (BODY TO INERTIAL)
C

TRO XI - RNGSM(D11*SEEK11 + D21ESEEKI2 + D31XSEEKI3)
TRG VI - RNGSK(D12XSEEK11 + D22XSEEK12 + D32*SEEK13)
TRO ZI - RNGG*(D13*SEEKII + D23XSEEK12 + D33MSEEKl3)
I -ALTIDO

C
TRG XIS - TRO XI
TRG VIS - TRO VI
TRO ZIS - TRO ZI

C
TRO AXI - 8.8
TRO AVI - 5.5
TRO AZI - 8.5

TRO VXS - TRO VSMCOS DG(ASP THO) * COS DG(ASP PSI)
TRO VYS - TRO VONCOS DG(ASP THS) * SIN DG(ASP PSI)
TRG VZS - TRO VSNSIN DG(ASP THS)

C
TRO VXB - TRO VXSNSEEK1I+TRG VVSNSEEK21+TRG VZSXSEEK3I
TRO 'dYE - TRG VXSK SEEK 12+TRG VYS*SEEK22
TRG VZB - TRO VXSNSEEK13+TRG VYSNSEEK23+TRG VZSNSEEK33

TRG 'dXI - D1INTRG 'dX94D21NTRG VVB+D31KTRG 'dZB
TRG 'dYI - D 12NTRG VXB.D22XTRG VYB+D32KTRG VZB
TRO VZ I a D 13NTRG VXB+D23KTRG VYB+D33NTRG 'dZB

C CONVERT TO fl/SEC

TROYVXI- TRG VXI IKVSOUNDNK TO FT
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TRG VYI - TRO VYI * VSOUND *K TO FT
TRO VZI - TRO VZI * VSOUND * K TO FTP

C
TROVS =TRG VS*VSOMDMK TO FT

C
C INITIALIZE RANGE AND VC
C

RNO I - RNGSP
VC = (TRO 'VAX! Y(4)) *DABS(TRG XI)
1 *TRG VY! DABS(TRG YI)
2 *TRG VZI *DABS(TRG ZI)
VC =VC/RNG I

C
C INITIALIZE TARGET MOTION
C

IF(TRG VYI.EQ.8) TRO PS9 = 19**3
IF(TRG VYI.NE.8) TRG PS6 - TRO VXI/TRG VYI
TRG PS6 - DATAN(TRG PS6) *RD TO DO
IF(TRG VXI.GE.6.AND.TRG VYI.GE.9.)

I TRO PS6 - TRG PS9
IF(TRG VXI.GE.6.AND.TRG VYI.LE.S.)
ITRG PS6- TRG PS8

IF(TRG VXI.LE.6.AND.TRG VYI.GE.9.)
1 TRG PSS- +TRGPSS +f9.
IF(TR6 VXI.LE.6.AND.TRG VYI.LE.S.)

ITRG PSS- - TRG PSS- 9S.
THS 9 DSO2RT((TR6, VXI**2)+(TRG3 VYI**2))
IF(THS.EQ.8) TRG THS - 1S**3
IF(THS.NE.6) TRO THS - TRG VZI/THB
TRO THS - DATAN(TRG THS)*RD TO DG
IF(TRG VZI.GE.9.) TRO THS O TRO THS
CSPSI6 - COS DGCTRG P56)
SNPSIS - SIN DOCTRO P88)
SNTHS - SIN DG(THS)
TXO - TROXI
TYO -TRG YI
TZO - TR6 ZI
OLD T - 6.6

C
RETURN

C
C OUTPUT
C

1 CONTINUE
C

TRG ALT - -TRO ZI
TRO PHS -S0.

C
*PHIm - Y(8)*RD TO .DO

THETA. - Y(9)*RD TO DG
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PS11.o Y(18)*RD TO DO
WRITE(NPLOT, 189)

166 FORMAT(1H19////1X913('*'),' Bank-to-Turn Missile '

WRITE(NPLOT,266) ALTID~s MSL ye ,THETAm,PHIm,
16MB TH96MB PS99ASP THSASP PSSTRG ALTTR6 VO,
2TRG THS9TRG PH6,RNG9

286 FORMAT(1X,'Inital Set Up',///g
15X,'Missilt :'//,15x,'Altitudo - '.gG12.21
25X9'Velocity - ,012.2g/,15X,'Pitch 90',12.29
3dX9'Roll -'612.2,/,15x,'Gym Theta- 19612.29
45X,'Oyn Psi -'9G12.2q//05Xq'Target s'//,
515xp'Asp Thota' ,G12.2,dXg'Asp Psi 19'612.2g/9
615x,'Altitude =',612.295X,'Velocity -',612.2p/,
715Xs'Pitch w ,612.295Xp'Roll Jj1.//
815X,'Rang* = fvG12.29/)
W#RITE(NPLOT9368) Y(4),YC5)lY(6)$TRG XIsTRG Y19TRG Z19
ITRG VXITRG VY19TRG VZI

386 FORMATC1HS,'Inltal Position/Velocity',//,
15X,'Missile :'//,15xp'X Velocity -j'G12.29/1
215Xp'Y Velocity ',612.2,/,15X,'Z Velocity
30812.29//g
45X,'Target :'//,15x,'X - ',612.2g/;
5f5X9' - 612.29/915XZ 98220/
615x$'X Velocity m-98,12.29/t
715X9'Y Velocity - .,812.2,/,15X,IZ Velocity
8612.*2)
WRITE(NPLOT,400) MISS DSITGO HTTRG PHI

466 FORATCHS,'Paramters 'I//q
15X,'Miss Distance - ',012.2,
25X,'TGO HT m 09612.29/9
3SX9'Target Roll - 11,812.2)
IF(JCNTRL.EG.1) I4RITE(NPLOT950S)

568 FORI'AT(1H6,'61 Guidance')
IF(JCNTRL.EG.2) WRITE(NPLOT,516)

516 FORMT(H,'Pro-Nav Guidance')
IF(JCNTRL.EQ.3) WRITE(NPLOT,52S)

526 FORMAT( 1HS,'Bank-to-Turn Guidance')
IF(JLIMIT.EG.S) WRITE(NPLOT,53S)

536 FORMT( 1HS,-Unconstrained')
IF(JLIMIT.EQ.1) WRITECNPLOT954S)

546 FORMT( 1HS,'Constrained')
IF(JTIME.EG. 1) WRITE(NPLOT,556)

556 FORMAT(1H@9'Riggs Tgo')
IF(JTIME.EG.2) WRITE(NPLOT9568)

566 FORMAT(1HS,'New Tgo')
C

RETURN
END
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APPENDIX DGENERIC MISSILE CHARACTERISTICS

The generic bank-to-turn missile (Figure D.1) is a short range

missile that can produce more than 100 g of normal acceleration and

approximately 5 g of lateral acceleration. ROLL rates of up to 500

degrees per second are attainable. Launch weight is 165 pounds with 50

pounds of propellant that produces 4712 pounds of thrust for 2.6

seconds. The shape is 2:1 elliptical cross section with a blunt base

and parabolic forebody. The wings are planar with a clipped double

delta platform. The tails are all movable crusiform also with a clipped

double delta. Additional information is available in [30,31).

II
Figure .1 BANK-TO-TURN MISSILE
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